Matematică, întrebare adresată de popasonia72, 8 ani în urmă


Se consideră funcția f:
RR, f(x) = mx + m - 4, unde m este număr real. Determină numărul real m pentru care punctul A(2, -1)
aparţine reprezentării geometrice a graficului acestei funcţii.

Răspunsuri la întrebare

Răspuns de Silvia8542778524952
1

Răspuns:

m= 1

Explicație pas cu pas:

Prima dată scriem condiția pentru care punctul A(2,-1) aparține graficului funcției f, și anume:

A(2,-1) ∈ Gf f(x) = mx + m - 4 ↔ f(2) = -1

Inlocuind valorile in funcția f(x) = mx + m - 4 obținem

2m+m-4 = -1

În funcția f(x)=mx+m-4 am înlocuit pe x cu 2 și pe f(x) care înseamnă y cu -1.

Având relația 2m+m-4 = -1 îl putem calcula pe m.

2m+m-4 = -1;

2m+m=-1+4;

3m=3;

m=3/3;

m=1∈R

Pentru m=1∈R avem punctul A(2,-1) care aparține graficului funcției f: RR,

f(x) = mx + m - 4

Alte întrebări interesante