Matematică, întrebare adresată de balutaiuliana9, 8 ani în urmă

Transformați în fracții ordinare ireductibile următoarele fracți
2,4
15,21
0,145
8,12
10,314
0,5
2,(3)
0,(123)
3,(14)
1,1835
1,2(5)
0,22(31)
9,7(123)
6,12(7)
0,11(234)​


elenamotica9: buna de ce ai nevoie ca nu inteleg

Răspunsuri la întrebare

Răspuns de ciolpanmariuca91
1

2,4 = \frac{24}{10} = \frac{12}{5}

15,21 = \frac{1521}{100}

0,145 = \frac{145}{1000} = \frac{29}{200}

8,12 = \frac{812}{100} = \frac{203}{25}

10,314 = \frac{10314}{1000} = \frac{5157}{500}

0,5 = \frac{5}{10} = \frac{1}{2}

2,(3) = \frac{23-2}{9} = \frac{21}{9} = \frac{7}{3}

0,(123) = \frac{123-0}{999} = \frac{123}{999}  = \frac{41}{333}

3,(14) = \frac{314-3}{99} = \frac{311}{99}

1,1835 = \frac{11835}{10000} = \frac{2367}{2000}

1,2(5) = \frac{125-12}{90} = \frac{113}{90}

0,22(31) = \frac{2231}{9900}

9,7(123) = \frac{97123}{9990}

6,12(7) = \frac{6127}{900}

0,11(234)​ = \frac{11234}{99900}

 

EXPLICAȚIE:

Pentru a transforma o fracție zecimală (cu perioadă) în fracție ordinară, procedăm astfel:

1.  Scriem la numărător numărul, fără virgulă și paranteze, iar apoi scădem din el partea  care nu se află între paranteze. Nu vom scrie și virgula.

2. La numitor punem atâția de 9, câte numere se află între paranteze. Dacă după virgulă se află și alte numere, care, totuși, nu sunt între paranteze, vom pune atâția de 0, câte astfel de numere avem.

3. După ce îndeplinim primele două cerințe, ajungem la fracția ordinară. Dacă este cazul, poți face simplificări până ce ajungi la forma ireductibilă.

a,bc(de) = \frac{abcde-abc}{9900}

OBSERVAȚIE: În scrierea numerelor raționale, formă zecimală, NU se folosește perioadă 9/99/999/9999/etc.

EXPLICAȚIE:
Pentru a transforma o fracție zecimală în fracție ordinară, procedăm astfel:
1. Scriem la numărător numărul, fără virgulă.
2. La numitor punem atâția de 0, câte numere se află după virgulă (numerele din partea dreaptă a virgulei).
3. După ce îndeplinim primele două cerințe, ajungem la fracția ordinară. Dacă este cazul, poți face simplificări până ce ajungi la forma ireductibilă.

Alte întrebări interesante