Matematică, întrebare adresată de raresciortescu5, 8 ani în urmă

va rog dau 100 de puncte​

Anexe:

Răspunsuri la întrebare

Răspuns de andyilye
3

1)

\bigg( \dfrac{3}{7}\bigg)^{8} \cdot \bigg( \dfrac{3}{7}\bigg)^{13} = \bigg( \dfrac{3}{7}\bigg)^{8 + 13} =\bigg( \dfrac{3}{7}\bigg)^{21}

\dfrac{ {12}^{5} }{ {14}^{5} } \cdot  \bigg( \dfrac{6}{7} \bigg)^{7} = \bigg( \dfrac{12 ^{(2} }{14} \bigg)^{5} \cdot \bigg( \dfrac{6}{7} \bigg)^{7} = \bigg( \dfrac{6}{7} \bigg)^{5} \cdot \bigg( \dfrac{6}{7} \bigg)^{7} = \bigg( \dfrac{6}{7} \bigg)^{5 + 7} = \bigg( \dfrac{6}{7} \bigg)^{12}

\dfrac{1}{32} \cdot \bigg( \dfrac{1}{2} \bigg)^{23} = \dfrac{{1}^{5}}{ {2}^{5} } \cdot \bigg( \dfrac{1}{2} \bigg)^{23} = \bigg( \dfrac{1}{2} \bigg)^{5} \cdot \bigg( \dfrac{1}{2} \bigg)^{23} = \bigg( \dfrac{1}{2} \bigg)^{5 + 23} = \bigg( \dfrac{1}{2} \bigg)^{28}

2)

\bigg( \dfrac{3}{5}\bigg)^{14} :  \bigg( \dfrac{3}{5}\bigg)^{9} = \bigg( \dfrac{3}{5}\bigg)^{14 - 9} =\bigg( \dfrac{3}{5}\bigg)^{5}

\bigg( \dfrac{5}{6} \bigg)^{7} : \dfrac{ {10}^{5} }{ {12}^{5} } = \bigg( \dfrac{5}{6} \bigg)^{7} : \bigg( \dfrac{10 ^{(2} }{12} \bigg)^{5} = \bigg( \dfrac{5}{6} \bigg)^{7} : \bigg( \dfrac{5}{6} \bigg)^{5} = \bigg( \dfrac{5}{6} \bigg)^{7 - 5} = \bigg( \dfrac{5}{6} \bigg)^{2}

\bigg( \dfrac{1}{7} \bigg)^{8} : \dfrac{1}{343} = \bigg( \dfrac{1}{7} \bigg)^{8} :\dfrac{{1}^{3}}{ {7}^{3} } = \bigg( \dfrac{1}{7} \bigg)^{8} :\bigg( \dfrac{1}{7} \bigg)^{3} = \bigg( \dfrac{1}{7} \bigg)^{8 - 3} = \bigg( \dfrac{1}{7} \bigg)^{5}

3) adevărată

\dfrac{8^{10}}{32^{6}} = \dfrac{( {2}^{3} )^{10}}{( {2}^{5} )^{6}} = \dfrac{{2}^{3 \times 10}}{{2}^{5 \times 6}} = \dfrac{{2}^{30}}{{2}^{30}} = 1

Alte întrebări interesante