Matematică, întrebare adresată de codepod, 8 ani în urmă

Problema de clasa a 7-a. Dau coroana. ​

Anexe:

Răspunsuri la întrebare

Răspuns de atlarsergiu
1

 \tfrac{1}{2}  +  \tfrac{1}{6}  +  \tfrac{1}{12}  +  \tfrac{1}{20}  + ... +  \tfrac{1}{a(a + 1)}  =  \tfrac{2021}{2022}  \\  \\  \tfrac{1}{1 \times 2}  +  \tfrac{1}{2 \times 3}  +  \tfrac{1}{3 \times 4}  + ... +  \tfrac{1}{a(a + 1)}  =  \tfrac{2021}{2022}  \\  \\  \tfrac{2}{1 \times 2}  -  \tfrac{1}{1 \times 2}  +  \tfrac{3}{2 \times 3}  -  \tfrac{2}{2 \times 3}  + ... +  \tfrac{a + 1 - a}{a(a + 1)}  =  \tfrac{2021}{2022}  \\  \\  \tfrac{1}{1}  -  \tfrac{1}{2}  +  \tfrac{1}{2}  -  \tfrac{1}{3}   + ... +  \tfrac{a + 1}{a(a + 1)}  -  \tfrac{a}{a(a + 1)}  =  \tfrac{2021}{2022}  \\  \\  \tfrac{1}{1}    -  \tfrac{1}{a} + \tfrac{1}{a}  -  \tfrac{1}{a + 1}  =  \tfrac{2021}{2022}  \\  \\ 1 -  \frac{1}{a + 1}  =  \frac{2021}{2022}  \\  \\  \frac{a + 1}{a + 1}   -  \frac{1}{a + 1}  =  \frac{2021}{2022}  \\  \\  \frac{a}{a + 1}  =  \frac{2021}{2022}  \\  \\ 2022a = 2021a + 2021 \huge |\normalsize \:  - 2021a \\ 2022a - 2021a = 2021 \\\bold{\boxed{ a = 2021}}

Răspuns de andyilye
1

Explicație pas cu pas:

\dfrac{1}{ {a}^{2} + a} = \dfrac{1}{a(a + 1)} = \dfrac{1}{a} - \dfrac{1}{a + 1}

\dfrac{1}{2} + \dfrac{1}{6} + \dfrac{1}{12} + \dfrac{1}{20} + ... + \dfrac{1}{ {a}^{2} + a} = \dfrac{2021}{2022} \\

\dfrac{1}{1 \cdot 2} + \dfrac{1}{2 \cdot 3} + \dfrac{1}{3 \cdot 4} + \dfrac{1}{4 \cdot 5} + ... + \dfrac{1}{a(a + 1)} = \dfrac{2021}{2022} \\

\dfrac{1}{1} - \dfrac{1}{2} + \dfrac{1}{2} - \dfrac{1}{3} + \dfrac{1}{3} - \dfrac{1}{4} + \dfrac{1}{4} - \dfrac{1}{5} + ... + \dfrac{1}{a - 1} - \dfrac{1}{a} + \dfrac{1}{a} - \dfrac{1}{a + 1} = \dfrac{2021}{2022} \\

\dfrac{1}{1} - \dfrac{1}{a + 1} = \dfrac{2021}{2022} \iff \dfrac{a + 1 - 1}{a + 1} = \dfrac{2021}{2022} \\

\dfrac{a}{a + 1} = \dfrac{2021}{2022} \iff 2022a = 2021a + 1 \\

2022a - 2021a = 2021 \implies \bf a = 2021 \\

Alte întrebări interesante