Matematică, întrebare adresată de AdelinaMt1526, 8 ani în urmă

Se consideră matricele $A=\left(\begin{array}{ll}2 & 3 \\ 3 & 2\end{array}\right), B=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), I_{2}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ și $M(x)=B+x I_{2}$, unde [$x$ este număr real.

5p a) Arătați că det $A=-5$[

$5 p$ b) Arătați că $A \cdot M(x)=M(x) \cdot A$, pentru orice număr real $x$.

$5 p$ c) Determinaţi numărul real $x$ pentru care $A \cdot A-3(A+M(x))=I_{2}$.

Răspunsuri la întrebare

Răspuns de AndreeaP
1

A=\left(\begin{array}{ll}2 & 3 \\ 3 & 2\end{array}\right)

B=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)

a)

Calculam detA, facem diferenta dintre produsul diagonalelor

detA=4-9=-5

b)

A·M(x)=M(x)·A

M(x)=B+xI₂

A\cdot M(x)=\left(\begin{array}{ll}2 & 3 \\ 3 & 2\end{array}\right)\cdot \left(\begin{array}{ll}x & 1\\ 1& x\end{array}\right)=\left(\begin{array}{ll}2x+3 &2 +3x\\ 3x+2& 3+2x\end{array}\right)

M(x)\cdot A= \left(\begin{array}{ll}x & 1\\ 1& x\end{array}\right)\cdot \left(\begin{array}{ll}2 & 3 \\ 3 & 2\end{array}\right)=\left(\begin{array}{ll}2x+3 &2 +3x\\ 3x+2& 3+2x\end{array}\right)

Se observa ca sunt egale

c)

A·A-3(A+M(x))=I₂

\left(\begin{array}{ll}2 & 3 \\ 3 & 2\end{array}\right)\cdot \left(\begin{array}{ll}2 & 3 \\ 3 & 2\end{array}\right)-3\left(\begin{array}{ll}2+x & 4 \\ 4 & 2+x\end{array}\right)=\left(\begin{array}{ll}1& 0 \\ 0 & 1\end{array}\right)

\left(\begin{array}{ll}13 & 12\\ 12 & 13\end{array}\right)-\left(\begin{array}{ll}6+3x & 12 \\ 12 & 6+3x\end{array}\right)=\left(\begin{array}{ll}1& 0 \\ 0 & 1\end{array}\right)

13-6-3x=1

7-3x=1

6=3x

x=2

Un alt exercitiu cu matrice gasesti aici: https://brainly.ro/tema/9835805

#BAC2022

#SPJ4

Alte întrebări interesante